
Automating gait generation

Harold C. Sun1 Dimitris N. Metaxas2

University of Pennsylvania

Abstract

One of the most routine actions humans perform is walking. To
date, however, an automated tool for generating human gait is not
available. This paper addresses the gait generation problem through
three modular components. We present ElevWalker, a new low-
level gait generator based on sagittal elevation angles, which al-
lows curved locomotion - walking along a curved path - to be cre-
ated easily; ElevInterp, which uses a new inverse motion interpola-
tion algorithm to handle uneven terrain locomotion; and MetaGait,
a high-level control module which allows an animator to control a
figure’s walking simply by specifying a path. The synthesis of these
components is an easy-to-use, real-time, fully automated animation
tool suitable for off-line animation, virtual environments and simu-
lation.

Keywords: Animation, animation systems, animation w/ con-
straints, human body simulation

1 Introduction

One of the most routine actions humans perform is walking. It is
also one of the most important actions to animate [29, 4, 3, 19, 5,
16, 17, 22, 27]. To date, however, an automated tool for generating
human gait is not available. The difficulty arises on two levels: at
the low level, most methods are not able to generate the many gait
variations necessary to fulfill the functional obligations of walking:
walking along an arbitrary path on possibly uneven terrain. At the
high level, previous methods require the animator to control the
walking by manipulating low-level parameters; this is a difficult
and tedious task.

We believe that in order to be a useful tool, a gait animation sys-
tem should be powerful enough to create curved locomotion (walk-
ing along a curved path) on uneven terrain. Furthermore, animators
should not need to set low-level parameters of the gait system; the
walking system should compute these itself, so that the animator
is freed to engage in more creative and stimulating tasks. We have
developed a multi-layer system which addresses these issues.

Our system is shown in Figure 1. At the base of our system is a
motion generator, consisting of two parts: ElevWalker, which is ca-
pable of animating curved path human locomotion; and ElevInterp,

1University of Pennsylvania, Philadelphia, PA 19104,
hsun@graphics.cis.upenn.edu

2University of Pennsylvania, Philadelphia, PA 19104,
dnm@graphics.cis.upenn.edu

a motion data transformation component, which allows our system
to handle walking on uneven terrain. Above these, we have built
a user-level control module, MetaGait, which automates the deci-
sions of how to follow paths and terrain, how to compute the next
footstep, and how to compute the values of the motion generator’s
parameters. Our interface allows a user to direct a human figure

ElevWalker

ElevInterp

MetaGait

parameter values

dataset, parameter values

Desired path

Geometry

Motion data

Motion data

Figure 1: Our gait system components

to “follow this path to that point”, and the system takes care of the
details. Other systems’ interfaces often require the user to specify
individual footsteps; this can be useful for the control it gives, but it
is not an option for many applications, such as real-time simulation
and games. Moreover, many application developers do not want
to have to specify such detail - our system provides a “black box”
which does the right thing, with a minimum of interaction neces-
sary.

Our system accomplishes these goals by integrating high-level
knowledge with a low-level walking motion generator through a
simple interface. Our ElevWalker and ElevInterp modules have a
small set of high-level, intuitive parameters - such as step length,
step height, heading direction and toe-out - which makes it easy
for MetaGait to control the walking pattern. Within the MetaGait
controller, we have embedded walking-specific rules and gait data
about how these variables are interrelated, which allow it to com-
pute their values automatically.

Our ElevWalker component introduces a new algorithm using
the sagittal elevation angle motion representation [2, 24, 25, 23],
which allows curved locomotion to be generated extremely easily.
Our ElevInterp component utilizes a new technique for solving the
inverse motion interpolation [28] problem, calculating low-level in-
terpolation parameters so that users only work with the high-level
parameters step height and step length. Our MetaGait component is
the first high-level control module for human gait animation which
combines control of many gait variables to ensure curved path fol-
lowing on uneven terrain.

The rest of the paper proceeds as follows. Section 2 describes
previous work on animation of gait. Section 3 describes the kine-
matic model we use in this work. Section 4 describes ElevWalker,
our walking motion generator based on sagittal elevation angles.
Section 5 describes ElevInterp, our motion data transformation en-
gine. We introduce MetaGait in Section 6, describing how to gener-
ate curved path and uneven surface gait. Section 7 describes results
obtained with our model, and Section 8 presents a discussion and
future work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACM SIGGRAPH 2001, 12-17 August 2001, Los Angeles, CA, USA
© 2001 ACM 1-58113-374-X/01/08...$5.00

2 Related work

There has been much work on generating gait for animation. An ex-
cellent survey of these efforts can be found in [20]. There are two
general approaches to generating gait: physically based or kinemat-
ics.

Modelling walking and other forms of locomotion using a phys-
ically based approach [19, 21, 10, 17, 13] has the seemingly impor-
tant advantage that any generated walking solution must be physi-
cally realistic, because gravity, muscle torques and the various sur-
face reaction forces have been accounted for.

However, upon closer inspection, this is not the guarantee it ap-
pears to be. Dynamics alone does not make a motion look like a
human performed it. The set of walking motions an observer might
accept as “normal human walks” is a strict subset of the physically
realistic walking motions the human body can produce. Therefore,
in addition to physical realism, there must be another discriminant
which captures the essence of “human-ness” to a walk. The dy-
namics problem turns into a search for this control criterion. While
biomechanics research has shown some success [1], this solution
is extremely computationally expensive, and real-time animation is
not currently possible.

The alternative is to use a kinematics approach. While this tech-
nique does not guarantee physical realism, there has still been good
success using kinematics. This is largely due to the talents of skilled
animators, as well as the increasing ease of capturing kinematic data
and using these to drive animation.

The issue with using kinematics for generating walking motions
[7, 3, 4, 16] has been how to generalize these kinematic data to
different figures and different situations: walking style, path and
terrain. Bruderlin and Calvert [4] used a dynamic model, which
computed a generic walking pattern, with inverse kinematics to en-
sure that the swing ankle moved along a specified trajectory. Their
system also allowed the user to interact with high-level parame-
ters such as our ElevInterp module, and modelled some interac-
tions between high-level parameters such as our MetaGait module.
However, their models were not extended to the general problem
of curved locomotion on uneven terrain. Ko and Badler [14, 15]
used an analytic method for generalizing gait data across different
stride lengths, along with an inverse dynamics post-processing step
to check that the motion was feasible. Their system allowed curved
path locomotion but not on uneven terrain.

These previous systems, and others, used biomechanical knowl-
edge, such as the movement of the foot and pelvis in each of the
phases of gait, along with some gait data, to produce their gener-
alizations. Another approach is to use larger amounts of gait data
to compensate for less biomechanical knowledge. Wiley and Hahn
[28] used linear interpolation across a single parameter, slope an-
gle, to generate walking on a sloped surface. This work solved the
inverse interpolation problem, but assumed a linear relationship be-
tween interpolation parameter and slope parameter, and used more
data than our ElevInterp approach. Rose et al. [22] used radial-
basis function interpolation to generate curved locomotion on un-
even terrain, with different emotional adverbs. They did not address
how to compute interpolation coefficients given desired physical
constraints.

We combine the strengths of both approaches, incorporating the
use of multiple data sets as well as biomechanical knowledge. Us-
ing data sets allows us to generate uneven terrain locomotion which
looks realistic. Furthermore, we embed biomechanical knowledge
so that our MetaGait model can modify gait parameters in a biome-
chanically principled way. This allows our system to operate auto-
matically, by knowing how step length or toe-out will affect turning
radius, or how step height and step length interact.

Motion editing systems [8, 18] are invaluable tools for general-
purpose motion work. However, by their nature, they require and

Hip joint (3 DOFs each)

Knee joint (1 DOF each)

Upper ankle joint (1 DOF each)
Lower ankle joint (1 DOF each)
Toe joint (1 DOF each)

Figure 2: Kinematic model structure

encourage user interaction. Hence they do not fit well with the
paradigm of automatic, non-interactive motion generation. Further-
more, these systems do not have the specialized knowledge about
how walking parameters interact. Therefore, additional structure
such as our MetaGait model is still necessary to supply this knowl-
edge.

3 Kinematic model

Our gait generator computes the motion for the lower body of a
human figure, therefore our kinematic chain only incorporates the
legs, feet and pelvis. Our model contains 14 joint degrees, which
are more than sufficient to generate many stylistic variations in
walking. The location and degrees of freedom (DOF) at each joint
is illustrated in Figure 2.

We compute the joint trajectories for 14 joint DOFs. We also
calculate the position and orientation of the kinematic root, which
has 3 translational and 3 rotational DOFs. Our model therefore has
a total of 20 DOFs.

4 ElevWalker: gait motion generation

In this section, we describe our gait motion generator, ElevWalker,
and introduce a new algorithm using the sagittal elevation an-
gle motion representation [2, 23]. This data representation, de-
scribed below, makes generating curved locomotion extremely sim-
ple. ElevWalker uses a combination of motion data and procedural
animation techniques to produce realistic, curved path walking mo-
tion in real-time.

ElevWalker takes motion data in the form of sagittal elevation
angles. The sagittal plane is a vertical plane which bisects the figure
into left and right halves. We define a limb segment v between two
points a and b on the limb: v = a � b. Typically a and b are
points at opposite ends of a limb, e.g. the knee center and the ankle
center are used to measure the elevation of the lower leg.

We project v onto the sagittal plane to form vsag. The angle
between vsag and the negative y axis is its sagittal elevation angle,
�. If we consider the XY plane to be the sagittal plane, then:

tan� =

�
vsagx

�vsagy

�
(1)

In addition to allowing curved locomotion to be generated, sagittal
elevation angles are interesting for biomechanical reasons [2, 9, 24,
23] as well, which are beyond the scope of the current paper.

An example of marker placement and sagittal elevation angle
measurement is shown in Figure 3. We have followed the definition
of elevation angles and placement of markers as used in [2], with
the addition of a heel marker. In our model, we use the elevation
angles of four limb segments of the lower body: the foot, the lower
leg, the upper leg and the pelvis. At each instant, the elevation
angles for the four limb segments define a point in 4D. A walking
motion dataset is thus represented concisely as a curve c(t), a set

Pelvis segment and y-axis Pelvis elevation angle

Figure 3: Measuring the pelvis sagittal elevation angle

of 4D points over time. We normalize the domain of c(t) so that
t 2 [0; 1).

Points in the range t 2 [0; :5) represent the elevation angles dur-
ing the stance phase of gait, while points in the range t 2 [:5; 1:0)
represent the elevation angles during swing phase. At each frame,
we select two points, c(ti) and c(ti + :50), where ti 2 [0; :5). The
information contained in these two points can be thought of as a
“silhouette” of the legs of the walking figure. ElevWalker uses this
information to compute the joint angles of the lower body.

Figure 4: The limb segments’ elevations must equal the elevation
angle data

Each elevation angle implies the orientation of its corresponding
limb segment’s projection onto the sagittal plane. Therefore, we
compute the figure’s joint angles so that its silhouette matches the
sagittal elevation angle data silhouette. This is depicted in Figure
4. We also compute the kinematic (or figure) root based on these
constraints.

x

y
z

z
x

Sagittal coordinatesWorld coordinates

Figure 5: The sagittal plane

As a matter of definition, we parameterize the sagittal plane ori-
entation by a single angle, , which describes the rotation of the
sagittal plane about the global y-axis. This is described by Figure
5; the figure also shows the sagittal plane coordinate system. We
will use later to perform curved locomotion.

ElevWalker’s algorithm for computing the kinematic (figure)
root transformation and joint angles begins at the current stance
foot. The figure root transformation is computed first. We then
compute the figure’s joint angles, working up the stance leg, across
the pelvis, and back down the swing leg; the order of these compu-
tations is shown in Figure 6.

1: figure root/stance toe

2: stance ankle complex

3: stance knee

4: hip complex

5: swing knee

6: swing ankle complex

Figure 6: The joint angles and their order of computation

4.1 Computing the figure root

The kinematic figure root is calculated first at each time step. At all
times, the figure root is located within the current stance foot. We
have developed a foot-floor interaction model which maps the foot
elevation angle to the kinematic root transformation, while produc-
ing realistic-looking foot and floor contact.

The foot-floor interaction model solves for a root transformation
so that the foot segment satisfies the foot elevation angle constraint:
the foot segment’s elevation angle must equal the dataset elevation
angle. The interaction model also keeps the foot in contact with the
ground without penetrating the ground. Furthermore, the foot is not
allowed to slide across the ground. These properties are obtained
by calculating the instantaneous point of contact of the foot with
the ground. The root is then updated by rotating the foot around
this point to satisfy the elevation constraint. This is depicted in
Figure 7. In our implementation, we compute the instantaneous
point of contact using a modified version of the collision detection
package V-COLLIDE [11]. Since the contact point continuously
moves forward along the bottom of the foot, we must recompute
the contact point at each frame.

(a) Elevation = 25� (b) Elevation = 15� (c) Foot is flat

Figure 7: The foot rotates about the point of contact (in white) until
it is flat on the ground

Once we have the point of contact, we rotate the foot segment
so that its orientation equals the dataset foot elevation angle. The
rotation axis is a vector normal to the sagittal plane, and through the
point of contact. By rotating about this axis, and by recomputing
the point of contact at each frame, the foot stays on the surface of
the ground and does not penetrate it.

We define the foot being flat on the ground as occurring when a
point in the forefoot (toe segments) and a point in the hindfoot (heel
segment) are both in contact with the ground. When this condition
is met, the root is moved to the toes, and the elevation of the foot is
then satisfied by the first toe joint (allowing the heel to rise from the
ground). The root transformation no longer changes until the swing
side and stance side are swapped.

4.2 Computing the joint angles

After computing the figure root, we proceed to compute the joint
angles, working up the stance leg and then down the swing leg. At
many of these joints, we are concerned with only a single DOF and
a single elevation angle constraint. For example, the stance knee
joint (depicted in Figure 6) has only a single DOF. At this joint and

others like it - the stance toe, the swing knee, and the swing ankle -
we can compute the joint angle analytically.

We wish to compute the joint angle � such that the sagittal eleva-
tion angle of the limb segment v yields the desired dataset elevation
angle �. Let the joint axis q̂ pass through the joint center c. In gen-
eral, the joint axis q̂ will not be perpendicular to the sagittal plane,
but skew1.

The left-hand diagram in Figure 8 illustrates how � changes as
v rotates about the joint axis.

�

�

q̂q̂

ŷ

b(�) a(�)a(�)

v

aq âs
âc

c

c0

Figure 8: Solving elevation angle constraint for a single joint

Recall from Section 4 that each limb segment has two sites asso-
ciated with it: a and b. As � changes, the sites a and b will trace
circles about q̂. Figure 8 depicts these circles projected onto the
sagittal plane; in general, the joint axis is skew to the sagittal plane,
thus the projections are ellipses. Parameterizing the circle formed
by a yields:

a(�) = a
c cos(�) + a

s sin(�) + c
0

where the quantities used are defined as:

aq = (a � q̂)q̂ = component of a along the axis
c0 = c+ aq = center of circle in space
ac = (a� aq) = radial component of the circle in space
as = q̂� ac = other radial component of circle

These quantities are shown on the right-hand diagram in Figure 8.
A similar expression for b(�) arises, with c00 as its center.

In order to compute the sagittal elevation angle of v, we project
a and b onto the sagittal plane. a is projected onto the sagittal
plane by asag = R()�1a, where describes the orientation of
the sagittal plane (see Figure 5) and R() is a rotation about the
y-axis. This yields:

a
sag(�) = R()�1

a(�) (2)

= [R()x � a(�); R()y � a(�); R()z � a(�)]

where R()x, R()y and R()z are the first, second and third
column vectors of R(), respectively. bsag(�) has a similar ex-
pression.

The elevation angle constraint (Equation 1) relates asag and
bsag to the elevation angle �:

asagx � bsagx

a
sag
y � b

sag
y

= � tan� (3)

Substitute asag(�) and bsag(�) into Equation 3. Letting d = ac �
bc, e = as � bs, and f = c0 � c00 yields:

A cos � +B sin � + C = 0 (4)

1This is particularly true at the ankle joints [12].

where

A = (R()x � d) + tan�(R()y � d) (5)

B = (R()x � e) + tan�(R()y � e) (6)

C = (R()x � f) + tan�(R()y � f) (7)

This equation can be solved analytically, and yields 0, 1 or 2
solutions. The case where 0 solutions are returned occurs when
no value of the joint angle � achieves the desired elevation angle �.
This situation has never occured in practice, and is unlikely to occur
unless the joint axis q̂ is very close to lying in the sagittal plane. In
the case of 1 solution, the returned value of � is used as the joint
angle. In the case of 2 solutions, only one solution will cause v to
achieve �. The second solution causes v to achieve ��; we test
which is correct and use the proper one.

4.3 Stance ankle and hip joint complexes

The previous section detailed how to compute joint angles if only a
single DOF and a single elevation constraint existed. However, at
the stance ankle complex, we have two DOFs, the upper and lower
ankle joints, and only a single elevation constraint on the stance
lower leg. At the hip complex, things are similar: we have six
DOFs, three from each side, but only three elevation angle con-
straints. At these areas, we must do something different.

Our solution is to add constraints until we have as many con-
straint as DOFs. We can then solve these problems numerically.
The benefit of adding constraints is that we can parameterize them
with high-level, intuitive variables such as stance width and toe-
out. These parameters will later allow us to modify the gait while
keeping the motion dataset invariant.

Stance ankle complex At the stance ankle complex, we define
stance width Wst(t) to be the distance from the stance foot to the
pelvis, in the direction of the sagittal plane normal. At the stance
ankle complex, we simultaneously solve two constraints: the lower
leg elevation angle constraint, and the following:

(ast � hst) � n̂�Wst(t) = 0 (8)

where n̂ is a unit vector normal to the sagittal plane, ast is a site on
the stance ankle and hst is a site at the stance hip. By manipulating
Wst(t), we can change the stance side width during gait.

These constraints are solved simultaneously to yield the upper
and lower ankle joint angles. The joint angles are computed us-
ing a numerical search method; we have found Gauss-Newton’s
method to be extremely effective, using the previous joint angles
as the search starting point.

Hip joint complex The hip complex consists of the stance hip
and swing hip joints. Each joint has 3 degrees of freedom, so the
entire complex has a total of 6 DOFs. Three elevation angle con-
straints apply to the hip joints: stance pelvis, swing pelvis, and
swing upper leg elevation angles. We require 3 more equations to
determine a unique solution. As with the stance ankle, we add con-
straints which have high-level parameters.

The first parameterized constraint is for pelvic list. This is the
amount of rotation in the frontal plane and manifests as one hip
being higher than the other. Pelvic list is shown in Figure 9(a). List
is defined to be the angle made between a and a horizontal plane.
The pelvic list parameter is L(t) and its associated constraint is the
following:

tan�1(ay; az)� L(t) = 0

By manipulating L(t), we can change the amount of hip “waggle”
during gait.

a L(t)

Wsw(t)

hsw

asw n̂

ftrans

O(t)

Sagittal Plane

(a) (b) (c)

Figure 9: The hip model controls pelvic list, swing width and toe-
out

The second parameterized constraint is swing width, similar to
the stance width Wst(t) defined above. This parameter is depicted
in Figure 9(b). The parameter for swing width is Wsw(t) and the
constraint is the following:

(asw � hsw) � n̂�Wsw(t) = 0

where asw is a site on the swing ankle and hsw is a site at the swing
hip.

The third parameterized constraint is toe-out, shown in 9(c). Toe-
out is the amount of inward/outward rotation of the leg; we de-
fine toe-out for the swing leg only, as the stance leg is fixed on
the ground. Let f be a vector affixed to the swing leg; f should
point forward when toe-out is 0�. Let f trans be the projection of
f onto the transverse, or horizontal, plane. Toe-out is defined as
the angle between f trans and the forward direction of the sagittal
plane, xsag . The parameter for toe-out is O(t), and its associated
constraint is the following:

cos�1(f trans � xsag)�O(t) = 0

By manipulating O(t), we can change the direction the swing foot
points, in the transverse plane. Later we will show how toe-out is
used in producing curved locomotion.

As in the stance ankle model, we use a numerical search method
to find the hip joint angles which satisfy these six equations. We
again use the solution from the previous time step as the start-
ing point and find the method usually converges rapidly, within 4
Gauss-Newton iterations.

4.4 Curved locomotion

The heading direction describes the orientation of the sagittal
plane (see Figure 5) and the direction of walking. By leaving it
fixed, the figure walks in a straight line. However, if we vary ,
curved locomotion results. This is extremely important for reducing
the number of necessary datasets. Generating curved locomotion
does not require collecting any more motion data, only modifying
the parameter. In Section 6, we describe how MetaGait updates
the heading direction .

5 ElevInterp: motion data transformation

The previous section described how ElevWalker generates realistic-
looking, real-time curved locomotion. However, given a fixed
dataset, ElevWalker is not able to modify the the step length and
the step height of its resulting gait. Step length and height are
features which can be measured by looking at the sagittal plane,
hence they are fixed for a given sagittal elevation angle dataset.
The procedurally controlled parameters, such as heading direction,
stance/swing width, toe-out and list, are not observable in the sagit-
tal plane, hence they were independent of the dataset.

ElevInterp uses multiple datasets and interpolates between them
to generate new datasets which satisfy step length and height re-
quirements. These are then fed to ElevWalker; ElevInterp thus con-
trols the step length and height. In its use of interpolation between
motion datasets, ElevInterp is similar to the interpolation-based mo-
tion systems of [28, 22].

However, ElevInterp’s interface does not take interpolation pa-
rameters as input; instead, it lets high-level controllers use step
length and step height as input parameters. ElevInterp takes care
of the background work, computing which datasets to interpolate,
and how to blend them, to achieve the specified length and height,
eliminating the need for the controller (or animator) to specify these
low-level and often unintuitive parameters. For this task, we have
developed a new, efficient solution to this inverse motion interpola-
tion problem which requires less data than the technique of [28].

5.1 Inverse motion interpolation

We first think about datasets as motions. In order to characterize
a motion, we will measure some features when it is applied to a
specific figure, such as step length and height. Let f(ds), which
we define below, be a function which measures the step height and
step length achieved by a motion (a dataset). This produces a 2-
dimensional space, a Height/Length space, in which each dataset
can be located.

We also think of our motion datasets as points in an abstract
“dataset space”. To be consistent with the two features we are mea-
suring, the dataset space is also two-dimensional. Coordinates in
this space will later serve as interpolation parameters, so we have
set them to be approximately in the range [0, 1] for step length and
[-1:1] for step height2.

Figure 10 illustrates these two spaces. The space on the left is the
“dataset space”. The space on the right is the Height/Length space,
showing the actual step height and length achieved by a particular
figure using that dataset; these coordinates represent real distances
in centimeters. f(ds) takes a dataset from dataset (interpolation)
space to physical space.

Dataset space (unitless dimensions) Height/Length space (in cm)

f(ds)

f�1(ds)

ds(t)

Figure 10: Mapping from the dataset space to the physical space

When an animator, or MetaGait, requests that ElevInterp gen-
erate a step with length SL and height SH , ElevInterp must de-
termine which datasets to interpolate, and what the interpolation
weights should be. This is the inverse motion interpolation prob-
lem, because we must invert both the measurement function f(ds)
as well as the interpolation function.

ElevInterp performs interpolation using a simple yet general
framework: triangulations and barycentric coordinates. Triangu-
lations allow us to work with fewer data points than n-dimensional
linear interpolation, as the input samples do not have to bound the
desired point in all n dimensions. While the technique of [22] is su-
perior in terms of the number of datasets for forward interpolation,
a cell decomposition using triangulations is useful for inverse inter-
polation because it allows us to rapidly compute which datasets are

2However, the actual values of these coordinates are arbitrary and differ-
ent ranges could be used.

used in the inversion process. In our system, we use the vertices of
the containing triangle.

Figure 10 shows three datasets forming the vertices of a trian-
gle, both in dataset space and in Height/Length space. The figure
also depicts a dataset which is within the interior of these triangles.
Let the barycentric coordinates of this dataset with respect to the
vertices in Height/Length space be (a; b; c). A barycentric interpo-
lation can be defined as the following:

ds(t) = a � ds1(t) + b � ds2(t) + c � ds3(t) (9)

where ds(t) is the new dataset and ds1(t); ds2(t) and ds3(t) are
datasets associated with the vertices.

Given barycentric coordinates, it is simple to compute a new
dataset by via barycentric interpolation. Likewise, if we are given a
2D point and a set of vertices which contain that point, it is simple
to compute its barycentric coordinates. Inversion of the interpola-
tion function is therefore straightforward.

Inverting f(ds), the function which maps datasets to real phys-
ical step lengths/heights, takes a little more effort. First we
will give our definition of f(ds). In order to estimate the step
length and height at the end of the gait cycle, we use a pla-
nar model of the figure. Let the stance side elevation angles be
ds(0:5) = f�st1 ; �

st
2 ; �

st
3 ; �

st
4 g, and the swing side elevation an-

gles be ds(1:0) = f�sw1 ; �sw2 ; �sw3 ; �sw4 g.
We also require the lengths of the limbs. Let L be the lengths of

the limbs from foot to pelvis: L = (l1; l2; l3; l4), respectively. Then
the estimated position of the swing ankle ~psw is the following:

f(ds;L) = ~psw

=

4X
i=1

liR(�sti)(0; 1; 0) +

4X
i=2

liR(�swi)(0;�1; 0) (10)

where R(�) is a 2-by-2 rotation matrix.
This calculation produces ~psw = (l; h). The components of the

computation are illustrated in Figure 11. The first summation repre-
sents the stance leg segments (up arrow), and the second summation
represents the swing leg segments (down arrow). Inverting f(ds)
means finding the dataset which produces the correct step length
and step height. Since the desired point (SL; SH) exists in the
Height/Length space, we can determine its barycentric coordinates
with respect to its containing triangle. We then use these barycen-
tric coordinates in the dataset space to compute the new dataset
ds(t).

l1

l2
l2

l3
l3

l4
l4

~psw

Figure 11: Computing the height/length of the swing foot

Unfortunately, f(ds) is non-linear, so the computed dataset
ds(t) may not satisfy the requirement f(ds(t)) = (SL; SH). If
the triangle is small, then linearity will approximately hold, and
ds(t) � (l; h).

On the other hand, if the triangle is large, then the non-linearity
of f(ds) will likely cause f(ds) not to equal (SL; SH), although it

will be close. In this case, we use ds(t) as a good starting estimate
from which to begin a numerical search for the correct interpolation
parameters. The complete algorithm for finding the interpolation
parameters for a desired height/length combination (SL; SH) is as
follows:

1. (Height/Length space) Locate the triangle T which con-
tains (SL; SH) in Height/Length space;

2. (Height/Length space) Compute the barycentric coordi-
nates of (SL; SH) with respect to T ;

3. (Dataset space) Compute a new dataset ds(t) accord-
ing to Equation 9 using the barycentric coordinates from
Step 2;

4. If f(ds) = (SL; SH), then the dataset satisfies the
height/ length requirement. Go to 6.

5. Otherwise, use ds(t) and f(ds) as the starting point in
the numerical search;

6. (Height/Length and Dataset space) Insert the dataset
into both triangulations using (SL; SH) for the physical
coordinates, and (SL=leg length; SH=leg length) for the
dataset coordinates.

We find that by exploiting temporal coherence and using the last
located triangle, the effort to find the containing triangle in Step 1
remains small, even when the number of datasets grows large. In
Step 5, we use a Gauss-Newton search to find the dataset which
maps to (SL; SH). In Step 6, after we have found the desired
dataset, we insert it into both triangulations, splitting the triangles
which contain these points. Since we wish the triangles to have as
short sides as possible, we use a Delaunay triangulation [6]. This
splitting decreases the triangles’ sizes and improves the linear ap-
proximation, increasing the likelihood that in the future we will be
able to skip the numerical search of Step 5.

6 MetaGait

The previous sections described the low-level modules we use to
generate gait. In this section, we describe MetaGait, a high-level
controller which manipulates the parameters of these modules so
that an animator can direct a figure simply by specifying its path.
At each frame, MetaGait performs the following computation:

1. Compute the parameter values for curved locomotion.

2. Compute the parameter values for uneven terrain, based
on the values set for curved locomotion.

3. Notify the motion generator to use the new parameter
values.

6.1 Curved locomotion

Following a curved path specified by the animator involves chang-
ing the heading direction parameter , as well as possibly modify-
ing the toe-out and step length parameters O(t) and SL(t) at each
frame. Furthermore, if the path contains a very sharp turn, we may
require a spin turn to augment the normal step turning (see Section
4.4) that ElevWalker uses.

Let p(t) be a path specified by the user. The first task is to com-
pute the heading direction . One possibility is simply to use the
gradient rp(t). However, this value can change very rapidly, par-
ticularly at sharp corners. We instead use a vector difference which
varies less wildly.

At each frame, we estimate two points: p0, the point on the path
closest to where the figure is, and p1, the point on the path where
the figure will be one step from now. Given these two points, we
form the vector d = p1�p0; d is the direction in which we wish to

p0

p1

p2

d

d0

Figure 12: The estimated points used in path following, and some
example frames

head. Figure 12 shows an example of these quantities. We then cal-
culate the orientation of the sagittal plane as = atan2(�dz;dx).

We may also modify the toe-out parameter O(t) during curved
walking. Since toe-out affects only the swing leg, manipulating it
does not change the gait during the current step. Instead, toe-out is
modified in preparation for the next step.

A figure’s orientation is dependent on the orientation of the
current stance foot, because the amount of rotation possible at the
hips is limited. Since the orientation of the stance foot depends on
its orientation during the previous swing phase, we can manipulate
its toe-out angle during swing phase to make a subsequent step eas-
ier.

The algorithm for this is as follows: at each frame, we estimate
the orientation of our body, d above. We also estimate the orienta-
tion of our body during the step after this one, d0 shown in Figure
12. If the angular difference � between these two orientations is
greater than a threshold T (45�, by default), it means we should ad-
just the toe-out parameter O(t) during this step so that the next step
will be easier to perform. We add the difference � � T to O(t),
pointing the swing foot in the direction of curvature.

In the presence of very sharp turns, large adjustments of toe-out
may look unnatural. In these situations, we rotate the character on
the stance foot as well. Let T2 be a threshold on how much we can
adjust toe-out (25� by default). If � � T > T2, then we set the
toe-out toO(t)+T2. When the next step begins, we use a spin turn
to assist the step turn, rotating (� � T � T2)

� by spinning on the
stance foot.

Finally, step length SL may also change as a result of curved lo-
comotion: one does not take the same length steps when navigating
sharp turns as when walking a straight path. We define � thresh to
be the maximum angle that can change in a single gait cycle.

We compute a maximum step length so that the change in is
less than � thresh. To calculate the maximum step length SLmax,
we iteratively estimate the change in using the current step length,
and reduce the step length (currently by a fixed amount) until the
change is less than � thresh. This value of SLmax is used later, to
compute the actual step length.

6.2 Uneven terrain locomotion

After the parameters for curved locomotion have been computed,
we compute the step height and step length for uneven terrain lo-
comotion. MetaGait computes the step length and step height in
physical coordinates, and lets ElevInterp handle the problem of cal-
culating interpolation coefficients to satisfy these parameters.

Our uneven terrain model is an iterative process for computing
SH and SL, the height and length, of the current step. The process
consists of three steps:

1. Predict where the swing foot will land.

2. Find the height of the ground at that point.

3. Make sure the step length at that height is acceptable,
otherwise compute the new length and return to Step 1.

For Step 1, we use the current value of SH and SL as initial esti-
mates. However, SH and SLmeasure the step length and height in
sagittal plane coordinates, and what we need is the global location
where the swing foot will land (for Step 2). The following equation
transforms these into global coordinates:

psw = R()
�
[SL; SH] + offsetpelvis

�
+ pst

The term offsetpelvis is the lateral distance between the hips, and
helps to account for the lateral position of the swing foot. This is
added to the vector [SL; SH], and we multiply the resulting vector
by R() to transform into global coordinates. Finally, we add pst,
the current stance foot position, to get the global location.

In Step 2, we find the height of the ground by intersecting a ver-
tical line passing through psw with the ground geometry. This is
subtracted from the current stance foot y-position to yield the height
difference h.

In Step 3, we must test the step height and the step length for
compatibility. In [26], Sun et al. present a linear relationship be-
tween ground slope angle and step length. Figure 13 shows how
step length varies as a function of step height for an average sized
person, using the equations presented in [26]. This curve is the
“preferred step length for height” relationship, because it reveals
how people naturally change their step length to accomodate up
and down slope walking (step length decreases when not walking
on flat terrain). Step height SH and step length SL are determined
with respect to ground slope angle, �, measured in degrees. The
downhill equations (in meters) are the following:

SL(�) = 0:627 + 0:0075� (downhill) (11)

= 0:623 � 0:0019� (uphill)

SH(�) = SL(�) � tan(�) (12)

55

56

57

58

59

60

61

62

63

-10 -5 0 5 10

Downhill
Uphill

Figure 13: Preferred stride length (y) for stride height (x), in cm
[26]

Due to the existence of preferred step length for height, we can-
not simply pick a step length and compute the corresponding height.
The step length might need to be lengthened or shortened to acco-
modate the preferred step length for that height. We should also
ensure that our step length is not greater than the maximum step
length SLmax calculated for curved locomotion.

MetaGait uses Equations 11 and 12 to compute the preferred step
length SLpref for the height h. We set SL to min(SLpref; SLmax),
and return to Step 1. At the end of Step 3, the value of SH and SL
for the next step have been determined.

6.3 Setting new parameter values

After the parameters have been calculated for curved locomotion
and uneven terrain walking, we notify the motion generator to use
the new parameter values. ElevInterp handles step length and step
height, while ElevWalker handles heading direction and toe-out.

MetaGait is activated at every frame, so these parameters are
constantly changing. The underlying motion generator allows pa-
rameters to be modified at every frame, allowing it to be more re-
sponsive than systems which can modify parameters only at the
beginning of a new step.

7 Results

Our system was designed for automated, real-time motion genera-
tion for virtual environment applications and simulations. We be-
lieve we have achieved this goal: across a variety of environments,
our system can maintain a frame rate of 50+ frames per second (no
graphics output). These tests were made on an 800 MHz Pentium 3
with 128 Mb memory.

We have generated several examples of walking on uneven ter-
rain, using five datasets: walking normally, walking uphill, walking
downhill, walking with short strides (level terrain), walking with
long strides (level terrain). These show our system’s ability to han-
dle curved locomotion on a continuously changing surface using a
very small amount of data.

We have used our system to generate animation on several dif-
ferent figures, including our primary skeleton figure, a smaller, fe-
male skeleton figure, and a larger, human figure. Due to the sagittal
elevation angle datasets’ invariance with respect to size, the same
datasets were used for all three figures with no modification or pre-
processing.

Figure 14: Examples of walking on uneven, sloped terrain

We also compare our generated motions against those of real
humans. Below, we compare actual hip, knee and ankle forward
trajectories with our generated trajectories. Since our model does
not control these positions, e.g. through the use of a spatial spline
curve, this is a test that we can recover position using the eleva-
tion angles. Figure 15 shows a graph of real hip, knee and ankle
positions plotted against normalized gait cycle time [12], as well
as the hip, knee and ankle positions generated by our model. The
trajectories are very similar.

-50

0

50

100

150

200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Hip
Knee

Ankle

Figure 15: Positions of hip, knee, and ankle from data [12] vs gen-
erated data

We also compare the relative forward position of the pelvis. This
is the position of the pelvis relative to a point travelling at the aver-
age velocity. If the pelvis always moved at the average velocity, the
curve would be identically 0. When the curve is below 0, the pelvis
is behind a point travelling at the average velocity; when above 0,
the pelvis is forward of such a point. Figure 16 shows a graph of
pelvis position from [12]. Figure 17 shows our computed pelvis
position. Although our magnitude is larger, the overall shapes of
the trajectories are very similar.

Figure 16: Pelvis position relative to avg. velocity from data [12]

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pelvis Relative Position

Figure 17: Generated pelvis position relative to avg. velocity

8 Discussion and Future work

One of the most interesting results to come out of our research is
how well an alternate representation like sagittal elevation angles
works for gait animation. We hypothesize that there are other in-
teresting motion representations (other than joint angles) which are
yet to be discovered for other animation tasks.

The constraints used at the hip joint complex, controlling pelvic
list, toe-out and swing width, were chosen because these quantities
are most directly related to the unused joint DOFs, that is, the joint
DOFs not significantly involved in satisfying the elevation angle
constraints. The stance width constraint used at the stance ankle
joint complex was chosen for its analogy to the swing width con-
straint.

Five datasets were used in generating all of our examples, on all
of the figures. We were able to use so few datasets because of the
sagittal elevation angle representation’s invariance with respect to
figure size, and the ability to generate curved locomotion by chang-
ing the sagittal plane direction. This meant we did not need data for
each curvature and inclination combination.

MetaGait modifies high-level parameters, such as step length,
step height, toe out and heading direction, based on the terrain and
the path it is following. However, there are more interrelationships
which we do not model. For example, we do not modify the stride
width parameters during curved locomotion and we do not have an
explicit relationship between path curvature and step length, unlike
our height/length curves. Research into these interrelationships will
be crucial to the proper and realistic modelling of gait.

Our model generates movement for the lower body only. Cur-
rently we generate upper body motion by having the arms mirror
the opposite leg for arm swing, and bending the spine to compen-
sate for the pelvis’ motion, so that the head stays relatively still.
However, research in natural looking upper body motion is sorely
needed in order to improve the realism of walking animation.

We are interested in extending our research to running motions
in addition to walking. This would require the addition of some
dynamics to our model, which we believe could also improve the
veracity of our foot-floor interaction model, including the addition
of a dynamic double-stance phase. Our model also does not com-
pensate for objects in the path of the swing foot; additional research
into how to modify the walking motion to avoid low obstacles is
needed.

9 Conclusion

Our goal was to build a tool which relieves the burden of animating
walking by handling the low-level details of motion generation as
well as the higher-level details of correctly setting the parameters.
The system comprises three components. ElevWalker, based on the
sagittal elevation angle representation, computes low-level gait and
can generate curved locomotion. ElevInterp, introducing a new so-
lution to the inverse motion interpolation problem, performs dataset
interpolation to control the step length and step height. MetaGait
uses embedded biomechanical data and rules to control the param-
eters of the former components. Our system can be used to per-
form both traditional off-line animation of human walking as well
as on-line animation of an autonomous or user-controlled agent in
an interactive application.

References
[1] F. Anderson and M. Pandy. A Dynamic Optimization Solution for

One Complete Cycle of Human Gait. In Proc. International Society
of Biomechanics XVII Congress, page 381, Calgary, Canada, 1999.

[2] A. Borghese, L. Bianchi, and F. Lacquaniti. Kinematic Determinants
of Human Locomotion. J. Physiology, (494):863–879, 1996.

[3] R. Boulic, N. Thalmann, and D. Thalmann. A Global Human Walking
Model with Real-time Kinematic Personification. The Visual Com-
puter, (6):344–358, 1990.

[4] A. Bruderlin and T. Calvert. Goal-directed, Dynamic Animation of
Human Walking. In Computer Graphics (SIGGRAPH 89 Conference
Proceedings), pages 233–242, 1989.

[5] A. Bruderlin and T. Calvert. Interactive Animation of Personalized
Human Locomotion. In Proc. of Graphics Interface 93, pages 17–23,
1993.

[6] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.
Computational Geometry Algorithms and Applications. Springer-
Verlag Berlin, 1997.

[7] M. Girard and A. Maciejewski. Computational Modeling for the Com-
puter Animation of Legged Figures. In Computer Graphics (SIG-
GRAPH 85 Conference Proceedings), pages 263–270, 1985.

[8] M. Gleicher. Motion Editing with Spacetime Constraints. In SIG-
GRAPH 97 Conference Proceedings, pages 139–148, 1997.

[9] R. Grasso, L. Bianchi, and F. Lacquaniti. Motor Patterns for Human
Gait: Backward versus Forward Locomotion. J. Neurophysiology,
80:1868–1885, 1998.

[10] J. Hodgins, W. Wooten, D. Brogan, and J. O’Brien. Animating Human
Athletics. In SIGGRAPH 95 Conference Proceedings, pages 71–78,
1995.

[11] T. Hudson, M. Lin, J. Cohen, S. Gottschalk, and D. Manocha. V-
COLLIDE: Accelerated Collision Detection for VRML. In Proc. of
VRML ’97, 1997.

[12] V. Inman, H. Ralston, and F. Todd. Human Walking. Williams and
Wilkins, Baltimore/London, 1981.

[13] Y-M. Kang, H-G. Cho, and E-T. Lee. ‘an Efficient Control over Hu-
man Running Animation with Extension of Planar Hopper Model.
Journal of Visualization and Computer Animation, 10:215–224, 1999.

[14] H. Ko. Kinematic and Dynamic Techniques for Analyzing, Predicting
and Animating Human Locomotion. PhD thesis, Dept. CIS, University
of Pennsylvania, 1984. MS-CIS-94-31.

[15] H. Ko and N. Badler. Animating Human Locomotion in Real-time us-
ing Inverse Dynamics, Balance and Comfort Control. IEEE Computer
Graphics and Applications, 16(2):50–59, March 1996.

[16] H. Ko and J. Cremer. VRLOCO: Real-time Human Locomotion from
Positional Input Streams. Presence, 5(4):367–380, 1996.

[17] J. Laszlo, M. van de Panne, and E. Fiume. Limit Cycle Control and
Its Application to the Animation of Balancing and Walking. In SIG-
GRAPH 96 Conference Proceedings, pages 155–162, 1996.

[18] J. Lee and S.-Y. Shin. A Hierarchical Approach to Interactive Mo-
tion Editing for Human-like Figures. In SIGGRAPH 99 Conference
Proceedings, pages 39–47, 1999.

[19] M. McKenna and D. Zeltzer. Dynamic Simulation of Autonomous
Legged Locomotion. In Computer Graphics (SIGGRAPH 90 Confer-
ence Proceedings), pages 29–38, 1990.

[20] F. Multon, L. France, M-P. Cani-Gascuel, and G. Debunne. Computer
Animation of Human Walking: a Survey. Journal of Visualization and
Computer Animation, 10:39–54, 1999.

[21] M. Raibert and J. Hodgins. Animation of Dynamic Legged Loco-
motion. In Computer Graphics (SIGGRAPH 91 Conference Proceed-
ings), pages 349–358, 1991.

[22] C. Rose, M. Cohen, and B. Bodenheimer. Verbs and Adverbs: Mul-
tidimensional Motion Interpolation. IEEE Computer Graphics and
Applications, 18(5):32–40, 1998.

[23] H. Sun. Curved Path Human Locomotion on Uneven Terrain. PhD
thesis, Dept. of Computer and Information Sciences, University of
Pennsylvania, December 2000.

[24] H. Sun, A. Goswami, D. Metaxas, and J. Bruckner. Cyclogram pla-
narity is preserved in upward slope walking. In Proc. International
Society of Biomechanics XVII Congress, page 514, Calgary, Canada,
1999.

[25] H. Sun and D. Metaxas. Animation of Human Locomotion Using
Sagittal Elevation Angles. Proceedings of Pacific Graphics 2000,
2000.

[26] J. Sun, M. Walters, N. Svensson, and D. Lloyd. The Influence of Sur-
face Slope on Human Gait Characteristics: a Study of Urban Pedes-
trians Walking on an Inclined Surface. Ergonomics, 39(4):677–692,
1996.

[27] K. Tsutsuguchi, S. Shimada, Y. Suenaga, N. Sonehara, and S. Oht-
suka. Human Walking Animation Based on Foot Reaction Force in
the Three-dimensional Virtual World. J. Visualization and Computer
Animation, 11(1):3–16, 2000.

[28] D. Wiley and J. Hahn. Interpolation Synthesis of Articulated Figure
Motion. IEEE Computer Graphics and Applications, 17(6):39–45,
1997.

[29] D. Zeltzer. Motor Control Techniques for Figure Animation. IEEE
Computer Graphics and Applications, 2(9):53–59, 1982.

